本文共 2746 字,大约阅读时间需要 9 分钟。
在图像超分辨率(SR)领域,残差网络(ResNet)及其衍生物一直是研究热点之一。SRResNet(Shortcut Residual Network)作为一种高效的图像超分辨率方法,在大比例放大的场景中表现优异。本文将详细介绍SRResNet的网络结构、训练设置及实际效果。
SRResNet的核心架构由多个残差块构成,具体流程如下:
网络深度通过控制残差块数量(如23个或16个)调整,适用于不同超分辨率倍数的应用场景。
代码主要位于 /home/guanwp/BasicSR-master/codes/,运行以下命令启动训练和测试:
python train.py -opt options/train/train_sr.jsonpython test.py -opt options/test/test_sr.json
训练参数配置样例(train_sr.json)如下:
{ "name": "sr_resnet_baesline", "use_tb_logger": true, "model": "sr", "scale": 4, "gpu_ids": [1], "datasets": { "train": { "name": "DIV2K800", "mode": "LRHR", "dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub", "dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_bicLRx4", "subset_file": null, "use_shuffle": true, "n_workers": 8, "batch_size": 16, "HR_size": 128, "use_flip": true, "use_rot": true }, "val": { "name": "val_set5", "mode": "LRHR", "dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5", "dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_sub_bicLRx4" } }, "path": { "root": "/home/guanwp/BasicSR-master", "pretrain_model_G": null, "experiments_root": "/home/guanwp/BasicSR-master/experiments/", "models": "/home/guanwp/BasicSR-master/experiments/sr_resnet_baesline/models", "log": "/home/guanwp/BasicSR-master/experiments/sr_resnet_baesline", "val_images": "/home/guanwp/BasicSR-master/experiments/sr_resnet_baesline/val_images" }, "network_G": { "which_model_G": "sr_resnet", "norm_type": null, "mode": "CNA", "nf": 64, "nb": 23, "in_nc": 3, "out_nc": 3, "gc": 32, "group": 1 }, "train": { "lr_G": 1e-3, "lr_scheme": "MultiStepLR", "lr_steps": [200000, 400000, 600000, 800000, 1000000, 1500000], "lr_gamma": 0.5, "pixel_criterion": "l1", "pixel_weight": 1.0, "val_freq": 5e3, "manual_seed": 0, "niter": 2e6 }, "logger": { "print_freq": 200, "save_checkpoint_freq": 5e3 }} 在DIV2K800和SET5 datasets上测试,SRResNet在x4倍放大的场景中表现优异。测试结果如下:
代码实现中,批量处理支持8个线程,单次批量量共16张图像。建议根据硬件性能调整批量大小。
虽然本文未详细描述MOS测试结果,但支持使用NIQE等更具代表性的质量评估工具。
通过以上分析,SRResNet在图像超分辨率任务中展现出优异性能,是目前高比例放大场景的标准配置。
转载地址:http://xiajz.baihongyu.com/